July 8, 2022 Longchang Chemical

UV ink basic components: Photoinitiator

 

Photoinitiators are molecules that can absorb radiation and produce active intermediates with the ability to initiate polymerization by photochemical changes. Photoinitiator in the initiation of prepolymerization and monomer polymerization reaction, itself becomes part of the polymer structure cured into a film, there is a part not involved in curing into a film.

The effect of photoinitiator concentration on the light curing rate is shown in the figure, from the figure can be seen in the photoinitiator concentration at 7% of the UV light intensity required for the lowest that is the fastest curing rate, but then increase the concentration instead of reducing the curing rate.

Photoinitiator concentration is too high will be two problems, one is due to photoinitiator photolysis will produce part of the non-curing material, weakening the chemical resistance and physical properties of the coating; second is the high concentration of photoinitiator, the surface polymerization rate and the polymerization rate of the coating body ratio increases, different thickness of the coating at different stresses, which will make the coating crumpled, but also lead to fractures within the curing structure and curing layer and substrate This can also lead to fracture within the curing structure and peeling of the cured layer from the substrate.

The inhibitory effect of oxygen on the photoinitiator oxygen molecule is a trilinear state double radical, although it can not initiate acrylate polymerization, but it is easy to compete with the reaction involving other radicals. Photoinitiator photolysis after the formation of the trilinear state and oxygen reaction complexes, complex decomposition of the base state initiator inactivation, this phenomenon is also known as “quenching”; another phenomenon is that the free radicals generated by the photoinitiator and oxygen molecules to generate a more stable peroxide so that the free radicals are “removed “. These two phenomena will make the polymerization rate is greatly reduced, experimental evidence in the presence of oxygen coating 1pm thickness within the curing rate will be reduced by 20 times.

In order to overcome the impact of oxygen on the curing rate, the following measures can be taken. First, the use of inert gas such as nitrogen protection, this method of equipment and material costs are higher; Second, increase the concentration of photoinitiator; Third, in the coating is properly mixed with wax, wax will float on the surface to form a protective layer, isolate the role of oxygen, should not be too much when mixed, otherwise it will affect the gloss; Fourth, add amine sensitizer, reduce the inhibition of oxygen on the surface; Fifth, add some trifunctional groups or four functional groups of acrylate monomer The first is to add some tri- or tetra-functional acrylate monomers, which will increase the number of active points on the surface and thus reduce the oxygen effect.

The choice of photoinitiators from the following aspects, one is the price, the price of different photoinitiators vary dozens of times; second is the color, some photoinitiators produce colored substances after photolysis, such as benzaldehyde; third is the smell, such as benzene coupling dimethyl ketone, the reaction produces methyl formate, odor can not be used for food packaging; fourth is the corrosiveness, such as acetophenone derivatives after the reaction produces hydrochloric acid; fifth is the stability, two Benzophenone and derivatives of good stability, and benzoyldimethyl ketone stability is poor; sixth is the curing rate, such as cheap benzophenone curing rate is very low; seven is the photoinitiator absorb UV light wavelengths vary, the following chart shows several photoinitiator light-sensitive wavelength range.

 

Contact Us Now!

If you need Photoinitiator Price, please fill in your contact information in the form below, we will usually contact you within 24 hours. You could also email me info@longchangchemical.com during working hours ( 8:30 am to 6:00 pm UTC+8 Mon.~Sat. ) or use the website live chat to get prompt reply.

 

Photoinitiator TPO CAS 75980-60-8
Photoinitiator TMO CAS 270586-78-2
Photoinitiator PD-01 CAS 579-07-7
Photoinitiator PBZ CAS 2128-93-0
Photoinitiator OXE-02 CAS 478556-66-0
Photoinitiator OMBB CAS 606-28-0
Photoinitiator MPBZ (6012) CAS 86428-83-3
Photoinitiator MBP CAS 134-84-9
Photoinitiator MBF CAS 15206-55-0
Photoinitiator LAP CAS 85073-19-4
Photoinitiator ITX CAS 5495-84-1
Photoinitiator EMK CAS 90-93-7
Photoinitiator EHA CAS 21245-02-3
Photoinitiator EDB CAS 10287-53-3
Photoinitiator DETX CAS 82799-44-8
Photoinitiator CQ / Camphorquinone CAS 10373-78-1
Photoinitiator CBP CAS 134-85-0
Photoinitiator BP / Benzophenone CAS 119-61-9
Photoinitiator BMS CAS 83846-85-9
Photoinitiator 938 CAS 61358-25-6
Photoinitiator 937 CAS 71786-70-4
Photoinitiator 819 DW CAS 162881-26-7
Photoinitiator 819 CAS 162881-26-7
Photoinitiator 784 CAS 125051-32-3
Photoinitiator 754 CAS 211510-16-6 442536-99-4
Photoinitiator 6993 CAS 71449-78-0
Photoinitiator 6976 CAS 71449-78-0 89452-37-9 108-32-7
Photoinitiator 379 CAS 119344-86-4
Photoinitiator 369 CAS 119313-12-1
Photoinitiator 160 CAS 71868-15-0
Photoinitiator 1206
Photoinitiator 1173 CAS 7473-98-5

 

Contact US

English