January 7, 2023 Longchang Chemical

What are the six additives commonly used in UV coatings?

UV cationic and UV free base materials are very different, but the overall composition is similar. The cationic system is mainly epoxy materials, but the ordinary bisphenol A epoxy reaction speed is slow, with more applications of alicyclic epoxy / oxetane materials; free radical system commercialization is now very mature, with epoxy / polyester / polyurethane modified acrylate materials can provide more choice of solutions.

UV cationic systems have fewer raw material options than free radical systems, and low viscosity alicyclic epoxy resins are the main polymers. Take alicyclic epoxy resins as an example.

TTA21 of various purity specifications is the most dominant product in the UV coating industry. As the application of cationic UV coatings/applications continues to grow significantly, it is foreseen that the amount of alicyclic epoxy resins represented by TTA21 will increase.

 

In the specific product applications of inks/coatings, in addition to both needing UV light to provide curing energy, the two systems reflect major differences in performance performance and reaction characteristics.

 

1. Oxygen-blocking effect

UV cationic system does not have the effect of oxygen-blocking, but more afraid of water, moisture will affect the curing efficiency of cationic system; UV free radicals on the contrary, by the oxygen-blocking influence.

 

2. Substrate adhesion

Usually in the more difficult to adhere to the surface of the substrate, such as glass / metal / high-density plastic, UV cation than UV free base has better adhesion performance.

 

3. Volume shrinkage rate

UV free radical system formulation curing shrinkage rate is generally above 10%, while UV cation system can control the shrinkage rate of 1-3%, is a good solution to solve the volume shrinkage.

 

4. Dark curing characteristics

UV cation system can continue to react to the inner layer after stopping the light source irradiation, to complete the material after curing, this is the dark curing characteristics, very suitable for thick coating applications, heating the cation after curing speed is significantly helpful; UV free radical is a stop-and-go reaction system.

 

5. Contact safety

UV cation system reaction degree is close to 100%, safety can be REACH / FDA testing certification, can be used in food packaging and other related fields.

 

6. Light curing speed

In general the UV free radical system curing speed than the cationic system, affected by oxygen-blocking products cationic surface drying will be faster, but the actual drying speed is not as fast as the free radical, you can promote the reaction by heating, and eventually can reach a very good degree of completion.

 

Formulation notes

 

UV cation system can be mixed with UV free radical system in any proportion, called UV hybrid system, can improve the relative curing speed of UV cation and UV free radical shrinkage, affected by oxygen barrier and other shortcomings, the same film thickness of the system curing energy difference is not large.

 

UV cation system is to rely on the initiator generated by Lewis strong acid to do the active point of the ring-opening reaction, the formula will commonly affect the initiator activity of the material is mainly azo organic pigments (can be modified to do protection), and free radicals mixed with TPO/819/907 and other structures containing P, S and other elements of the initiator, and similar to 115 multi-level amine.

 

Humidity on the UV cationic system curing influence, control the ambient humidity within 50% is appropriate; while heating will speed up the reaction speed.

 

 

UV Photoinitiator Same series products

 

Photoinitiator TPO CAS 75980-60-8
Photoinitiator TMO CAS 270586-78-2
Photoinitiator PD-01 CAS 579-07-7
Photoinitiator PBZ CAS 2128-93-0
Photoinitiator OXE-02 CAS 478556-66-0
Photoinitiator OMBB CAS 606-28-0
Photoinitiator MPBZ (6012) CAS 86428-83-3
Photoinitiator MBP CAS 134-84-9
Photoinitiator MBF CAS 15206-55-0
Photoinitiator LAP CAS 85073-19-4
Photoinitiator ITX CAS 5495-84-1
Photoinitiator EMK CAS 90-93-7
Photoinitiator EHA CAS 21245-02-3
Photoinitiator EDB CAS 10287-53-3
Photoinitiator DETX CAS 82799-44-8
Photoinitiator CQ / Camphorquinone CAS 10373-78-1
Photoinitiator CBP CAS 134-85-0
Photoinitiator BP / Benzophenone CAS 119-61-9
Photoinitiator BMS CAS 83846-85-9
Photoinitiator 938 CAS 61358-25-6
Photoinitiator 937 CAS 71786-70-4
Photoinitiator 819 DW CAS 162881-26-7
Photoinitiator 819 CAS 162881-26-7
Photoinitiator 784 CAS 125051-32-3
Photoinitiator 754 CAS 211510-16-6 442536-99-4
Photoinitiator 6993 CAS 71449-78-0
Photoinitiator 6976 CAS 71449-78-0 89452-37-9 108-32-7
Photoinitiator 379 CAS 119344-86-4
Photoinitiator 369 CAS 119313-12-1
Photoinitiator 160 CAS 71868-15-0
Photoinitiator 1206
Photoinitiator 1173 CAS 7473-98-5

 

Contact Us Now!

If you need COA, MSDS or TDS, please fill in your contact information in the form below, we will usually contact you within 24 hours. You could also email me info@longchangchemical.com during working hours ( 8:30 am to 6:00 pm UTC+8 Mon.~Sat. ) or use the website live chat to get prompt reply.

Contact US

English