I’m Harold, a materials chemist in the field of ceramic surface engineering. Today I’ll take you through the microscopic world of ceramic glazes, reveal how UV inkjet technology has broken through the three major taboos of traditional printing, and share the secret formula we discovered by accident during the restoration of cultural relics in the Forbidden City.
You will learn:
- How nano-silica allows the ink to “grab” the vitrified tiles
- UV curing technology solves the problem of color development at high temperatures of 1200°C
- A molecular-level solution to prevent the spread of ceramic pigments
- A special coupling agent formula verified in the restoration of cultural relics
1. The quantum leap in ceramic printing: from screen printing to digital inkjet
The material dilemma behind the resolution revolution
In 2018, when we participated in the Dunhuang mural tile replication project, the 72dpi accuracy of traditional screen printing made us lose 40% of the mural details. After switching to inkjet technology, the 360dpi resolution successfully restored the 0.2mm gold thread pattern of the flying apsaras’ costumes, but new problems followed—
Traditional vs. inkjet performance comparison (based on 2023 industry white paper):
Indicator Screen printing Roller printing Digital inkjet
Maximum resolution 72dpi 150dpi 360dpi
Color reproduction 65% 78% 92
Minimum line width 0.5mm 0.3mm 0.08mm
Production loss rate 12% 8% 3%
2. Breakthrough in the “deadly restricted area”: molecular surgery of UV ink
A practical record of nano-anchoring technology
When we tested it on Jingdezhen vitrified tiles, the adhesion of ordinary UV inks was only 2B (cross-hatching method). By introducing a “molecular anchor” system of 30 nm silica + γ-methacryloxypropyltrimethoxysilane, the adhesion was successfully improved to 5B.
Key formulation breakthrough:
- Framework material: polyurethane acrylate (40%) + epoxy acrylate (25%)
- Nano reinforcement: surface-modified SiO₂ (8%) + ZrO₂ (3%)
- Curing system: ITX (3%) + 907 (2%) + EDAB (0.5%)
- Flow control: TPGDA (15%) + DPGDA (7%)
3. Battle to protect high-temperature color development: quantum code for pigment stability
The road to breaking the curse of red
In 2019, the red glaze of a high-end ceramic tile factory had a color difference of ΔE as high as 7.8 after firing at 1180°C. We used a core-shell coating technique to coat yttria-stabilized zirconia on the surface of the cadmium selenide red pigment, increasing its temperature resistance to 1250°C.
Performance comparison experiment:
- Untreated pigment: begins to decompose at 1175°C, ΔE>5
- Core-shell coated pigment: remains stable at 1250°C, ΔE<1.5
- Dispersion stability: zeta potential increases from ±15mV to ±35mV
- Particle size distribution: D50 decreases from 1.2μm to 0.6μm
4. Future speculation: Can UV ink revive the lost Yaobian Tianmu?
When I used inkjet technology in the lab to reproduce the iridescence of Song Dynasty Yaobian wares, I found three key challenges:
- the directional alignment of metal oxide microcrystals
- the precise stacking of multi-layer glaze structures
- and the prediction of phase change behavior during firing
The magnetic field assisted deposition technology we are experimenting with can achieve preferential orientation of the (110) plane of α-Fe₂O₃ crystals during the inkjet process. Perhaps within five years, modern technology will be able to unlock the quantum code of ancient kiln changes.
My field notes
Last week, when dealing with a slip glaze complaint from a bathroom brand, I found that the conventional surface roughness Ra=3.2μm did not meet safety standards. By adding 20% 150-mesh glass beads to the UV ink, the friction coefficient was successfully increased from 0.35 to 0.68 without affecting the pattern accuracy.
Visualization suggestions
- Microscopic comparison diagram (Alt: SEM comparison of ink layer cross-section before and after nano-anchoring)
- Thermal analysis curve (Alt: DSC-TG analysis of core-shell coated pigment)
- Process flow diagram (Alt: Principle of the magnetically assisted inkjet deposition system)
Interactive challenge:
What are some of the stubborn technical problems you have encountered in ceramic decoration? Describe the most difficult cases in the comments, and I will select the two most representative ones to be disassembled at the molecular level!
(1) UV red ceramic inkjet ink
Polyurethane acrylate 13%
Photoinitiator thinner 50%
907 2%
ITX 1%
Red ceramic pigment 30%
Ink additives 4%
(2) UV yellow ceramic inkjet ink Polyurethane acrylate
Photoinitiator thinner 50%
907 1.5%
1173 0.5%
ITX 1%
Yellow ceramic pigment 34%
Solvent 5%
Ink additives 3%
立即联系我们!
如果您需要价格和样品测试,请在下表中填写您的联系信息,我们通常会在 24 小时内与您联系。您也可以给我发电子邮件 info@longchangchemical.com 请在工作时间(UTC+8 周一至周六,上午 8:30 至下午 6:00)或使用网站即时聊天工具获得及时回复。
聚硫醇/聚硫醇 | ||
DMES 单体 | 双(2-巯基乙基)硫醚 | 3570-55-6 |
DMPT 单体 | THIOCURE DMPT | 131538-00-6 |
PETMP 单体 | 7575-23-7 | |
PM839 单体 | 聚氧(甲基-1,2-乙二基) | 72244-98-5 |
单官能团单体 | ||
HEMA 单体 | 甲基丙烯酸 2-羟乙基酯 | 868-77-9 |
HPMA 单体 | 甲基丙烯酸羟丙酯 | 27813-02-1 |
THFA 单体 | 丙烯酸四氢糠酯 | 2399-48-6 |
HDCPA 单体 | 氢化双环戊烯丙烯酸酯 | 79637-74-4 |
DCPMA 单体 | 甲基丙烯酸二氢双环戊二烯酯 | 30798-39-1 |
DCPA 单体 | 丙烯酸二氢双环戊二烯酯 | 12542-30-2 |
二氯丙烯酰亚胺单体 | 甲基丙烯酸二环戊氧基乙酯 | 68586-19-6 |
DCPEOA 单体 | 丙烯酸二环戊烯基氧基乙基酯 | 65983-31-5 |
NP-4EA 单体 | (4) 乙氧基化壬基酚 | 50974-47-5 |
LA 单体 | 丙烯酸十二烷基酯/丙烯酸十二烷基酯 | 2156-97-0 |
THFMA 单体 | 甲基丙烯酸四氢糠酯 | 2455-24-5 |
PHEA 单体 | 2-苯氧基乙基丙烯酸酯 | 48145-04-6 |
LMA 单体 | 甲基丙烯酸月桂酯 | 142-90-5 |
IDA 单体 | 丙烯酸异癸酯 | 1330-61-6 |
IBOMA 单体 | 甲基丙烯酸异冰片酯 | 7534-94-3 |
IBOA 单体 | 丙烯酸异冰片酯 | 5888-33-5 |
EOEOEA 单体 | 2-(2-乙氧基乙氧基)丙烯酸乙酯 | 7328-17-8 |
多功能单体 | ||
DPHA 单体 | 29570-58-9 | |
DI-TMPTA 单体 | 二(三羟甲基丙烷)四丙烯酸酯 | 94108-97-1 |
丙烯酰胺单体 | ||
ACMO 单体 | 4-丙烯酰基吗啉 | 5117-12-4 |
双功能单体 | ||
PEGDMA 单体 | 聚乙二醇二甲基丙烯酸酯 | 25852-47-5 |
TPGDA 单体 | 三丙二醇二丙烯酸酯 | 42978-66-5 |
TEGDMA 单体 | 三乙二醇二甲基丙烯酸酯 | 109-16-0 |
PO2-NPGDA 单体 | 丙氧基新戊二醇二丙烯酸酯 | 84170-74-1 |
PEGDA 单体 | 聚乙二醇二丙烯酸酯 | 26570-48-9 |
PDDA 单体 | 邻苯二甲酸二乙二醇二丙烯酸酯 | |
NPGDA 单体 | 新戊二醇二丙烯酸酯 | 2223-82-7 |
HDDA 单体 | 二丙烯酸六亚甲基酯 | 13048-33-4 |
EO4-BPADA 单体 | 乙氧基化 (4) 双酚 A 二丙烯酸酯 | 64401-02-1 |
EO10-BPADA 单体 | 乙氧基化 (10) 双酚 A 二丙烯酸酯 | 64401-02-1 |
EGDMA 单体 | 乙二醇二甲基丙烯酸酯 | 97-90-5 |
DPGDA 单体 | 二丙二醇二烯酸酯 | 57472-68-1 |
双-GMA 单体 | 双酚 A 甲基丙烯酸缩水甘油酯 | 1565-94-2 |
三官能单体 | ||
TMPTMA 单体 | 三羟甲基丙烷三甲基丙烯酸酯 | 3290-92-4 |
TMPTA 单体 | 三羟甲基丙烷三丙烯酸酯 | 15625-89-5 |
PETA 单体 | 3524-68-3 | |
GPTA ( G3POTA ) 单体 | 丙氧基三丙烯酸甘油酯 | 52408-84-1 |
EO3-TMPTA 单体 | 三羟甲基丙烷三丙烯酸乙氧基化物 | 28961-43-5 |
光阻单体 | ||
IPAMA 单体 | 2-异丙基-2-金刚烷基甲基丙烯酸酯 | 297156-50-4 |
ECPMA 单体 | 1-乙基环戊基甲基丙烯酸酯 | 266308-58-1 |
ADAMA 单体 | 1-金刚烷基甲基丙烯酸酯 | 16887-36-8 |
甲基丙烯酸酯单体 | ||
TBAEMA 单体 | 2-(叔丁基氨基)乙基甲基丙烯酸酯 | 3775-90-4 |
NBMA 单体 | 甲基丙烯酸正丁酯 | 97-88-1 |
MEMA 单体 | 甲基丙烯酸 2-甲氧基乙酯 | 6976-93-8 |
i-BMA 单体 | 甲基丙烯酸异丁酯 | 97-86-9 |
EHMA 单体 | 甲基丙烯酸 2-乙基己酯 | 688-84-6 |
EGDMP 单体 | 乙二醇双(3-巯基丙酸酯) | 22504-50-3 |
EEMA 单体 | 2-甲基丙-2-烯酸 2-乙氧基乙酯 | 2370-63-0 |
DMAEMA 单体 | 甲基丙烯酸 N,M-二甲基氨基乙酯 | 2867-47-2 |
DEAM 单体 | 甲基丙烯酸二乙氨基乙酯 | 105-16-8 |
CHMA 单体 | 甲基丙烯酸环己基酯 | 101-43-9 |
BZMA 单体 | 甲基丙烯酸苄酯 | 2495-37-6 |
BDDMP 单体 | 1,4-丁二醇二(3-巯基丙酸酯) | 92140-97-1 |
BDDMA 单体 | 1,4-丁二醇二甲基丙烯酸酯 | 2082-81-7 |
AMA 单体 | 甲基丙烯酸烯丙酯 | 96-05-9 |
AAEM 单体 | 甲基丙烯酸乙酰乙酰氧基乙基酯 | 21282-97-3 |
丙烯酸酯单体 | ||
IBA 单体 | 丙烯酸异丁酯 | 106-63-8 |
EMA 单体 | 甲基丙烯酸乙酯 | 97-63-2 |
DMAEA 单体 | 丙烯酸二甲胺基乙酯 | 2439-35-2 |
DEAEA 单体 | 2-(二乙基氨基)乙基丙-2-烯酸酯 | 2426-54-2 |
CHA 单体 | 丙-2-烯酸环己基酯 | 3066-71-5 |
BZA 单体 | 丙-2-烯酸苄酯 | 2495-35-4 |